카테고리 보관물: education

현미경 관련 교육

Basics of Microscopy(P01)

옛날부터, 사람은 맨눈으로 볼 수 있는 것보다 더 작을 것을 볼 수 있기를 원했다

16세기에 이르러 이러한 관심은 단일 볼록 렌즈로 만들어진 확대경을 만들어냈고, 결국 현미경의 개발로 이어지게 되었다.

현미경의 역사에서 가장 유명한 선구자는 아마도 영국의 Digges와 네덜란드의 Zacharis Janssen 일 것이다.

그러나 실제 현미경을 만들고 사용한 최초의 인물은 Antony Van Leeuwenhoek이다. 레이우엔훅은 작은 유리 볼을 가공하여 270X배율을 가진 세계 최초의 현미경을 만들었다.

Leeuwenhoek의 현미경은 오직 하나의 렌즈를 가지고 있었기 때문에 지금은 단렌즈 현미경이라 불리운다. 이 현미경은 볼록 렌즈를 금속 홀더에 장착하였고, 나사선를 이용하여 초점을 맞추었다.

그는 역사적 발명 이후에도, 계속 현미경 기초 연구에 헌신했다. 그의 발견은 박테리아를 포함하여 bellanimalcules (균의 일종) 그리고, spermatozoa(정자)와 같은 것들로 이어졌으며, Leeuwenhoek는 그의 인생 동안 약 400여개의 현미경을 만들어냈다.

Leeuwenhoek이 발명한 현미경과 같은 단안렌즈 현미경의 확대율 계산은 단순 확대경의 확대율 계산법과 같은 방법으로 계산된다. 상기 이미지와 같이 250㎜는 렌즈의 초점 거리에 의해 나누어진다. (여기서 250㎜는 사람의 눈에 있어 가장 보기 편한 초점 거리로 상정하여 고안된 것입니다. 독서 할 때 편한 책의 위치와 같은 개념으로 보시면 됩니다.)

단일 복록렌즈 현미경의 확대율을 증가시키기 위해서는, 렌즈의 초점 거리를 줄어야 합니다만, 초점 거리가 감소함에 따라 렌즈의 직경도 감소되어야 합니다. 배율의 확대를 위하여 렌즈의 직경이 너무 작아지면 이를 통한 확대 관찰이 어려워 집니다.

이 문제를 해결하기 위해서, 17세기에 복합현미경 시스템이 개발되었습니다. 이러한 방식의 현미경은 하나 이상의 렌즈를 조합하여, 하나의 렌즈에 의해 확대된 이미지를 또 다른 렌즈가 더욱 확대시키는 방식입니다.

오늘날 현미경이라 하면 보통 이러한 복합 현미경을 지칭합니다.

복합 현미경에서 표본에 접한 렌즈를 ‘Objective_대물렌즈’ ,
눈에 접한 렌즈를 ‘Eyepiece_접안렌즈’ 라고 부른다.

복합 현미경 발명 이후 그것은 과학 발전에 지대한 공헌을 하게 하였다. 복합 현미경을 이용하여, 17세기 영국의 Robert Hooke은 살아있는 것들은 세포로 구성 되어 있다는 것을 발견하였습니다.

이 이미지는 대체 속성이 비어있습니다. 그 파일 이름은 Basics-of-Microscopy_015.jpg입니다

의료계에서는 프랑스의 Louis Pasteur가 복합 현미경을 사용하여 효모균을 발견하였고, 독일의 세균학자 Karl J. Eberth는 Ebethella Typhosa(장티푸스로 의심되는 간균)를 발견하였다

Robert Koch가 결핵과 콜레라균을 발견하는 데도 복합 현미경이 도움을 주었다.

현미경의 개발은 19세기에 극적인 진전을 보였는데, 현미경 제작에 큰 노력을 기울인 칼 자이스, 광학 원리에 대한 이론적 연구를 수행한 에른스트 아베, 광학 유리에 대한 연구를 수행한 오토 스코프트와 같은 위대한 연구자들의 공헌 덕분이었다.

현미경 교육 자료

현미경의 분류

용도에 의한 분류

  • 생물현미경
  • 금속현미경
  • 측정현미경
  • 실체현미경

형태에 의한 분류

  • 정립형 현미경
  • 도립형 현미경

기능에 의한 분류

  • 명시야 현미경
  • 암시야 현미경
  • 편광 현미경
  • 미분간섭 현미경
  • 위상차 현미경
  • 형광 현미경
  • 공초점 현미경

그외 현미경

  • 적외선 현미경
  • 자외선 현미경
  • X선 현미경
  • 전자현미경
  • 원자 현미경

purposse of this wepsite

현미경 교육 사이트 개설 취지

www.microscopy.co.kr

이 사이트는 현미경에 대한 궁금증을 해결하는데 있어서, 도움이 되고자 하는 교육 목적으로 준비하고 있는 사이트입니다만, 현업에서의 경험을 포함하는 상업 사이트로서의 성격도 포함하고 있습니다.

Site 관리자 – 진재환 올림

E-mail : jhjin@jnoptic.com

HISTORY OF THE MICROSCOE

광학 현미경의 역사

단렌즈 현미경 – Single Lens Microscope

발명자 : 안톤 판 레이우엔훅 ( Anton van Leeuwenhoek : 1631 ~ 1723)

복식현미경 – Compound microscope

robert hooke microscope에 대한 이미지 검색결과
발명자: 로버트 후크 ( Robert Hooke : 1635 ~ 1703 ))

가시광선을 주로 사용하는 광학 현미경은 상기와 같이 단렌즈 현미경으로 시작하여 대물렌즈와 접안렌즈를 조합하여 사용하는 복합현미경의 모습으로 기본 구조를 갖추어 왔습니다. 또한 보다 높은 배율을 추구할 수록 흐려지는 이미지의 질을 높이기 위한, 수 많은 시도의 결과로 현재 우리는 양질의 이미지를 볼 수 있는 현미경을 사용할 수 있습니다.

또한 일반인이 흔히 알고 있는 광학현미경은 Bright Fileld 라고 불리는 관찰법으로써 설명 할 수 있습니다. 하지만, 이 관찰법만으로는 다양한 샘플을 보고자 하는 탐구자들의 욕구를 만족시키기 어렵기 때문에, 보다 다양한 관찰 방법이 개발되어 왔고, 향후에도 새로운 관찰법이 끊임없이 개발될 것으로 기대됩니다.

참고로, 오늘날의 대표적인 현미경 관찰법을 열거하자면 BF, DF, PO, Simple PO, DIC, PH, FLUORESCENCE 등을 들수 있습니다.

전자 현미경

SEM ; Scanning Eelectron Microscope

원자 현미경

AFM ; Atomic Force Microscope

Köhler illumination

쾰러 조명 장치

관찰하는 샘플의 전체 Field of View에서 밝고 균일 한 조명을 구현하기 위해서 사용되는 일반적인 조명 방법입니다. ( Köhler illumination )

조명 광원이 광학계의 내부에서 결상을 하게 되어 있습니다. 예전에 사용되었던 크리티컬 조명에서는 샘플의 상에 조명광원의 필라멘트 상이 겹쳐서 보이게 됩니다만, 쾰러 조명은 조명의 결상 위치를 무한보정 대물렌즈의 후초점면에 위치하도록 유도함으로서 샘플의 상에 광원의 상이 중복되는 문제점을 해결 하면서, 동시에 샘플 전체에 균일한 조명을 조사하는 것이 가능해 졌습니다.

현미경의 사용에 있어서 가장 중요한 포인트

현미경의 모든 관찰법은 상기와 같은 쾰러 조명을 기반으로 설계되어 있습니다. 따라서 쾰러 조명의 세팅 또는 설정이 틀어져 있는 상태에서의 현미경의 관찰은 그 설계 목적을 완전히 벗어나 있는 현미경 관찰을 하게 되는 것이며, 사용중이라고 생각하는 본래의 관찰법과는 상이한 알 수 없는 관찰법으로 샘플을 관찰 하는 비효율적인 경우가 빈번하게 발생되고 있습니다.

쾰러 조명에 대한 명칭을 생소하시게 느껴지신다면, 독자께서는 지금까지 현미경의 중요한 포인트를 제대로 알지 못하고 사용하시고 계셨을 가능성이 있습니다 . 바이오 이미징을 하시는 관찰자께서는 사용하시는 현미경의 쾰러 조명 설정이 제대로 되어있는지 반드시 확인하실 필요가 있습니다.

다만, 반사용 현미경을 주로 사용하시는 산업계 현미경 사용자 분들은 이러한 쾰러 조명의 잘못된 설정으로 받는 영향이 상대적으로는 적습니다. 그 이유로는 반사관찰을 위주로 하는 현미경에서는 대물렌즈 자체가 콘덴서 역할을 하기 때문에 쾰러 조명을 설정하기 위해서 콘덴서 위치 교정이 따로 필요하기 않기 때문입니다.

반사형 조명을 사용하는 현미경에서는 샘플에 초점을 맞추면, 그 자체로 콘덴서의 높이 설정이 완료되고 ( X, Y, Z축 위치 설정 ), Field 조리개(diaphragm)와 Aperture 조리개(diaphragm)의 설정(XY축 교정)이 상대적으로 변경되기 어려운 구조를 가지고 있기 때문에 입니다.

광학 구조 설명

KÖHLER ILLUMINATION은 현미경 광 경로 상에 2개의 결상계가 서로 결상 되지 않는 영역을 상보적으로 사용하도록 설계되어 있다.

Köhler illumination for fluorescence microscope

1st. 샘플의 상이 형성되는 결상계

첫째로는 샘플의 상이 형성되는 이미징용 결상계

  • Conjugate Field Planes
  • 샘플의 상이 결상 되는 위치
    • 접안렌즈의 Intermediate Image
    • 접안렌즈로 관찰시 눈의 시신경
    • Field Stop Diagphragm

2nd. 조명 광원이 형성되는 결상계

두번째로는 조명 광원의 상이 형성되는 결상계

  • Conjugate Aperture Planes
  • 조명 광원이 결상 되는 위치
    • 콘덴서의 전초점면(Front Focal Plane) 또는 Aperture diaphragm
    • 대물렌즈의 후초점면(Rear Focal Plane),
    • 접안렌즈 다음의 홍재조리개 이다. 참고로 시신경에 상이 결상하는 것이 아니기 때문에 형상을 인지 할 수 없습니다.

Polarization

편광 현미경

Polarization Microscopy

 

  • 편광현미경의 역사

19세기 중순 경 개발되어짐.

  • 편광현미경의 사용 용도

초기에는 암석과 광물의 연구에 주로 사용되어졌으나, 점차로 그 용도가 넓어져서 의약품, 공업제품 등 산업 전반에 걸쳐 이용분야가 확대 됨.

  • 편광현미경의 사용 목적

샘플의 광학적 성질을 조사하고,이를 통하여 샘플을 구성하는 물질이 무엇으로 이루어졌는지 동정 하기 위해 사용 됨.

  • 광학적 성질에 의한 샘플의 분류

광학적등방체

: 샘플에 빛이 통과 할때 어떠한 방향으로 빛이 진행하더라도 모든 방향에 대하여 동일한 광학적 영향을 준다.(복굴절 하지 않는다.)

예: 유리 등

광학적이방체

: 샘플에 빛이 통과 할때 빛이 진행하는 방향(각도)에 따라 다양한 복굴절을 한다.

일축성(isotropic body)

: 빛이 진행 할 때 복굴절하지 않는 광축을 하나만 가지고 있다.

예: 방해석, 석영 등

이축성(Anisotropic body)

: 빛이 진행 할 때 복굴절하지 않는 광축을 두개 가지고 있다.

 예: 운모, 장석, 각섬석, 휘석, 감람석 등

Phase-contrast

위상차 현미경 관찰법

Phase contrast Microscopy

  • 위상차 관찰법 발명자 정보

– Frits Frederik Zernike(네덜란드 과학자)
– 위상차 현미경 발명으로 노벨물리학상(1953)을 수상.

  •  발명 배경

  생물현미경에서 사용하는 대부분의 샘플은 무색투명한 특성을 가지고 있기때문에,  배율확대 만을 목적으로 하는 일반 현미경의 관찰법(Bright Field)에서는 투명하고 윤곽이 흐릿하게 보이기 때문에 제대로 된 관찰에 어려움이 있습니다.

  이 문제를 해결하기 위하여 샘플을 염색하는 방법이 사용하고 있습니다만,  이 방법으로는 살아있는 샘플의 관찰은 할 수 없습니다. 염색 도중에 샘플이 죽어버리기 때문입니다.

  • 위상차 현미경의 (개요)

위상차 관찰법(Phase-Contrast)은 샘플을 통과하는 직진광(하단 좌측 이미지)과 이 직진광이 샘플에 통과하면서 발생하는 회절광(하단 우측 이미지) 사이의 위상차 현상을 이용하여 살아있는 세포의 구조와 미생물의 상태변화를 볼게 있게 해주는 관찰법입니다.

  • 위상차 현미경의 원리 설명

  샘플의 한 포인트(샘플 평면 중의 한 점)를 통과하는 빛은 두 개의 광학 경로를 가지도록 설계 되어 있으며, 이 두개의 경로를 통과한 빛은 한점에 다시 한 점에 모여 확대된 상을 만들게 되지만, 다른 경로를 지나왔기 때문에 발생한 위상차에 의하여 보강 또는 소멸 간섭을 하게 된다.

  하단의 좌측이미지는 두개의 광학경로 중에 직진광의 경로이며, 하단의 우측이미지는 직진광이 샘플에 닿을때 발생하는 회절광의 경로이다. 참고로 직진광이 샘플이 없는 포인트를 지나가게 되면 산란이 생기지않아 회절광은 발생하지 않는다.

  회절광은 직진광의 위상에 비교하여 대략 1/4λ 지연되어 결상한다. 직진광은 위상판에 의하여 1/4λ 또는 3/4λ지연되어 결상한다.

  직진광이 위상판에 의하여 1/4λ 지연되어 회절광과 동일한 위상을 갖게 되면 직진광과 회절광의 위상이 서로 보강간섭을 하여 진폭이 커지게 되면 배경에서는 직진광의 영향만 받기 때문에 샘플이 배경 보다 밝게 보인다. (Negative contrast)

  반대로  직진광이 위상판에 의하여 위상이 3/4λ 지연되면 직진광과 회절광은 소멸 간섭을 하게 되어 샘플은 직진광의 영향만 받는 배경보다 어둡게 보인다. (Positive contrast)

위상차관찰 전용 현미경 – CKX53

세포배양을 목적으로 하는 소형 위상차 현미경

Simple Polarization

간이 편광(Simple Po)

Simple Polarization  

  • Simple Polarization theory (원리 설명)

본 관찰법은 편광필터 2개(편광자, 검광자)로 이루어진다.

상기 이미지와 같이 편광자와 검광자가 90도 각도로 설치 되어 있는 상태를 흔히 직교니콜(Cross Nicol)이라고 불리면, 현미경에서의 주요 사용 목적은 광학적 특성의 변화가 있는 빛만을 통과시키고자 할 때 자주 사용된다.

일반적으로 빛은 모든 방향으로 진동하는 특성을 가지고 있으나, 세로 방향 편광자(좌측필터)를 통한 빛은 세로로 진동하는 빛만이 통과하게 되고, 우측 필터(검광자)는 세로 편광을 차단하는 역할을 하기 때문에 실제로 우측으로 투과되는 빛은 없다.

간이 편광 현미경에서는 편광자와 검광자의 사이에 샘플이 위치하게 되며, 샘플 재질이 등방체 특성을 가지고 있는 경우에는  샘플 만으로는 광학적 특성에 변화를 줄 수 없기 때문에 접안렌즈나 현미경 카메라 측에서 관찰 할 수 없는 어두운 이미지가 나오는 것이 일반적이다.

참고로 등방체가 아닌 물질인 플라스틱은 편광자를 통과하여 얻은 편광된 빛에 큰 영향을 주기 때문에 이를 염두에 두고 사용하여야 한다. 예를 들어, 미분간섭 관찰에서 광학 경로 상에 플라스틱과 같은 재질이  있으면, 미분간섭 관찰을 위한 광학 설계를 무의미하게 만들어 버린다.

  • Bright Field Microscopy와 Polarization Microscopy 이미지 비교

Dark Field

암시야 현미경 관찰법

Dark Field Microscopy (Transmitted & Reflected)
명시야(BF) 이미지와 암시야(DF) 이미지의 비교
투과 현미경에서 보는 Bright filed Image & Dark Field Image

암시야 (Dark field ) 검경법 의 특징

  • 스크래치나 단차, 파티클을 강조하는 관찰법
  • 샘플에 닿는 직접 조명광은 밖으로 유도하고, 오로지 샘플에서 나오는 산란광 만을 대물렌즈로 취하는 관찰법
  • 배경이 어두운 상태에서 샘플이 반짝이기 때문에 현미경의 분해능을 넘어서는 관찰이 가능하다. 

생물 (Bio) 현미경

투과 조명 _ Bright Field 와 Dark Field 

산업(금속) 현미경

반사조명 _ Bright Field 와 Dark Field