Microscopy
지금까지 우리는 현미경의 역사와 구조에 대해서 이야기해 보았습니다. 다음은 다양한 관찰 방법들에 대해 알아보도록 하겠습니다.
Bright field 관찰은 가장 일반적인 관찰 방법로 관찰시 표본들은 최적의 contrast를 위해 염색되어야 합니다. 그러나 표본을 염색하기 어려운 샘플에 대응하기 위하여 다양한 여러 관찰방법들이 개발되었습니다.
표본이 살아있는 상태에서 관찰이 필요한 경우에는 관찰하고자 하는 염색을 할 수가 없습니다. 그래서 Bright Field(명시야) 관찰시에는 보다 contrast 를 높게 하여 관찰하여야 하기 때문에, 콘덴서의 N.A.값을 일반적인 condenser aperture setting보다 더 작게 설정하여야 합니다.
명시야 관찰법 이외에 콘덴서로부터 나온 빛이 대물렌즈로 직접 들어가지 않고, 표본에 맞고 산란된 산란광에 의해 표본을 관찰하는 방식인 암시야 관찰법이 있습다.
일반적으로 Dark Field(암시야) condenser는 고품질의 모델이 사용됩니다. 왜냐하면 대물렌즈의 조리개 보다 condenser의 조리개의 N.A. 값이 더 커야 암시야 관찰이 가능하기 때문입니다. Olympus BH2시리즈
는 immersion 과 dry 타입의 2가지 암시야 condenser를 가지고 있습니다.
암시야 관찰법에서는 직접광을 차단하기 위해 built-in iris diaphragm 기능이 포함되어 있는 높은 N.A.의 고배율 100X 대물렌즈가 사용되어 집니다. 만약, iris diaphragm을 너무 열고 사용하면 왼쪽 사진에 보이는 것 같이 flare가 발생됩니다. iris diaphragm을 조금 더 닫아주면 오른쪽에 보이는 것처럼 선명한 이미지를 볼 수 있습니다.
인간의 눈은 밝기와 색깔, 즉 빛의 파장과 진폭에 민감하기 때문에 contrast증가를 위해 표본은 일반적으로 염색되거나 고정되거나 슬라이드 글라스에 올려진 상태로 관찰되게 됩니다만, 이러한 과정은 살아있는 세포를 죽이기 때문에. 이런한 전처리를 하지 않는 상태에서 Bright Field(명시야) 관찰은 매우 어렵습니다.
그럼에도 불구하고, 살아있는 세포나 세포의 유사분열을 관찰하고 싶어하는 많은 연구자들이 있었습니다만, Bright Field(명시야) 관찰법은 이러한 욕구를 충족시키기 어료웠습니다.
1932년 네덜란드 물리학자 프리츠 제르니케(Frits Zernike)는 빛의 간섭 현상을 이용해 물체를 관찰하는 위상차현미경(phase contrast microscope)을 발명하여, 1953년 노벨 물리학상 수상의 영예를 안았습니다.
위상차 관찰법은 특수한 콘덴서 안에 있는 링 슬릿 조리개를 이용하였고,빛의 진행을 지연시켜 주는 둥근 위상판을 대물렌즈 안에 장착하였습니다.
위상차 관찰법은 일반 현미경에 오직 위상 콘덴서와 위상 대물렌즈를 추가하여 관찰이 가능하였기 때문에 매우 보편화되어 사용되고 있습니다. 녹색 필터는 종종 Contrast를 증가시키기 위해 사용합니다.
위상차 관찰법은 positive, negative contrast 모두에서 관찰이 가능 합니다. Positive contrast는 종종 세포와 분자의 내부 조직을 관찰시 사용되고, negative contrast는 낮은 contrast를 가진 물체의 형태나 물리적 운동의 관찰에 사용됩니다.
위상차 관찰법과 더불어 살아있는 세포와 같이 투명하여 Contrast가 매우 낮은 표본들의 관찰을 위한 다른 관찰법이 있습니다. 이 관찰법은 DIC관찰법(Differential interference contrast) 관찰법이라 불리고 다음 사진은 이 관찰법을 위한 부속장치들을 보여주고 있습니다.
미분간섭 관찰법은 링 슬릿 조리개와 위상판 대신 편광 필터와
개조된 Wollaston quartz 프리즘을 사용합니다.
미분간섭 관찰법은 후광이 없다는 점에서 위상차 관찰법의 단점을 해결하였고, 또한 물체의 경계를 명확히 구분지어 주며, 이미지를 뛰어난 명암으로 돋보이게 해 줄 수 있습니다. 게다가, 콘덴서의 조리개의 기능을 함께 사용할 수 있습니다. (위상차는 구조상 콘덴서의 조리개의 사용할 수 없습니다. )
형광 관찰법이라 불리는 또 다른 관찰방법은 형광이라는 현상을 사용합니다. 자외선 같이 특정 파장대의 빛을 비추면 몇몇 물질들은 그러한 파장을 흡수하고, 좀 더 파장이 좀더 긴 빛을 방출하게 됩니다. 이런한 현상을 이용한 것이 형광 관찰 현미경입니다.
엽록소나 몇몇 광물질들은 자연상태에서 이러한 형광을 발현합니다. 이러한 것들을 “자가 형광” 이라 합니다.
생물 표본의 자가형광은 매우 약하기 때문에 형광관찰 전에 형광염색
이나 형광색소가 첨가되어집니다. 형광은 형광물질 또는 이차형광에 의해 발광되어 관찰 될 수 있습니다.
투과조명 형광관찰법은 암시야용 콘덴서, 필터가 이용됩니다. 여기필터
는 광원에서 방출된 빛 중에서 원하는 특정 파장의 빛만 통과시킵니다. 표본의 형광 물질은 여기된 빛을 흡수하여 더 긴 파장대의 빛을 방출합니다. 이때 암시야 콘덴서는 여기광을 대물렌즈 광로에서 벗어나도록 방출시킵니다. Barrier filter는 남은 여기광들이 접안렌즈에 도달하지 못하도록 막아주게 됩니다. 따라서 어두운 배경에서 표본의 선명도와 Contrast가 커지게 만들 수 있습니다.
그러나, 반사조명 형광관찰법에서는 여기필터에 의해 여과된 짧은 파장의 여기광이 dichroic mirror를 통해 대물렌즈로 들어간다. 대물렌즈는 스스로 condenser 역할을 하고, 표본으로부터 방출된 형광은 대물렌즈로 되돌아옵니다. 그리고 dichroic mirror를 통과한 후 barrier filter를 거쳐 접안렌즈로 들어가게 됩니다.
지금부터는 편광관찰법에 대해 알아보기로 하자. 대부분의 물체들은 등방성이기 때문에 빛이 그것을 통과하여도 빛의 특성이 바뀌지 않는다. 하지만 방해석과 같은 물질은 빛이 그것들을 통과할 때 방향이 바뀐다. 이러한 물질은 anisotropic(이방성), birefringent(복굴절성)로 알려져 있다.
편광 관찰법은 이러한 birefringent 물질을 검사하기 위해 사용된다. Biredfringence(복굴절성)는 수정의 가장 특별한 특징 중에 하나이기 때문에 편광 관찰법은 바위, 광물, 수정 등의 연구에 이용된다.
Birefringence(복굴절성)는 또한 몇몇 생물학적 물질에서도 발생된다. 그래서 편광관찰법은 조직의 구조나 세포의 유사분열 등의 연구에 사용되기도 합니다.