16세기에 이르러 이러한 관심은 단일 볼록 렌즈로 만들어진 확대경을 만들어냈고, 결국 현미경의 개발로 이어지게 되었다.
현미경의 역사에서 가장 유명한 선구자는 아마도 영국의 Digges와 네덜란드의 Zacharis Janssen 일 것이다.
그러나 실제 현미경을 만들고 사용한 최초의 인물은 Antony Van Leeuwenhoek이다. 레이우엔훅은 작은 유리 볼을 가공하여 270X배율을 가진 세계 최초의 현미경을 만들었다.
Leeuwenhoek의 현미경은 오직 하나의 렌즈를 가지고 있었기 때문에 지금은 단렌즈 현미경이라 불리운다. 이 현미경은 볼록 렌즈를 금속 홀더에 장착하였고, 나사선를 이용하여 초점을 맞추었다.
그는 역사적 발명 이후에도, 계속 현미경 기초 연구에 헌신했다. 그의 발견은 박테리아를 포함하여 bellanimalcules (균의 일종) 그리고, spermatozoa(정자)와 같은 것들로 이어졌으며, Leeuwenhoek는 그의 인생 동안 약 400여개의 현미경을 만들어냈다.
Leeuwenhoek이 발명한 현미경과 같은 단안렌즈 현미경의 확대율 계산은 단순 확대경의 확대율 계산법과 같은 방법으로 계산된다. 상기 이미지와 같이 250㎜는 렌즈의 초점 거리에 의해 나누어진다. (여기서 250㎜는 사람의 눈에 있어 가장 보기 편한 초점 거리로 상정하여 고안된 것입니다. 독서 할 때 편한 책의 위치와 같은 개념으로 보시면 됩니다.)
단일 복록렌즈 현미경의 확대율을 증가시키기 위해서는, 렌즈의 초점 거리를 줄어야 합니다만, 초점 거리가 감소함에 따라 렌즈의 직경도 감소되어야 합니다. 배율의 확대를 위하여 렌즈의 직경이 너무 작아지면 이를 통한 확대 관찰이 어려워 집니다.
이 문제를 해결하기 위해서, 17세기에 복합현미경 시스템이 개발되었습니다. 이러한 방식의 현미경은 하나 이상의 렌즈를 조합하여, 하나의 렌즈에 의해 확대된 이미지를 또 다른 렌즈가 더욱 확대시키는 방식입니다.
오늘날 현미경이라 하면 보통 이러한 복합 현미경을 지칭합니다.
복합 현미경에서 표본에 접한 렌즈를 ‘Objective_대물렌즈’ , 눈에 접한 렌즈를 ‘Eyepiece_접안렌즈’ 라고 부른다.
복합 현미경 발명 이후 그것은 과학 발전에 지대한 공헌을 하게 하였다. 복합 현미경을 이용하여, 17세기 영국의 Robert Hooke은 살아있는 것들은 세포로 구성 되어 있다는 것을 발견하였습니다.
의료계에서는 프랑스의 Louis Pasteur가 복합 현미경을 사용하여 효모균을 발견하였고, 독일의 세균학자 Karl J. Eberth는 Ebethella Typhosa(장티푸스로 의심되는 간균)를 발견하였다
Robert Koch가 결핵과 콜레라균을 발견하는 데도 복합 현미경이 도움을 주었다.
현미경의 개발은 19세기에 극적인 진전을 보였는데, 현미경 제작에 큰 노력을 기울인 칼 자이스, 광학 원리에 대한 이론적 연구를 수행한 에른스트 아베, 광학 유리에 대한 연구를 수행한 오토 스코프트와 같은 위대한 연구자들의 공헌 덕분이었다.
Liver (Azan Stain)NRK-52E Cells (Phase Contrast)Distal Tip of a Drosophila Limb (DIC&GFP)Brain Section of Mouse at Embryonic Day 15 (GFP)NRK-52E Cells (Alexa Fluor 488&Alexa Fluor 546)Rainbow Mouse
UIS2 Objectives ( 대물렌즈 ) for BX53
UIS2 Objectives for BX53
UIS2 Objectives for BX53
X Line UPLXAPO
UIS2 X Line Objectives for BX53
X Line UPLXAPO는 기존의 대물렌즈보다 더 큰 NA , 더 나은 이미지 평탄도 및 더 넓은 파장대역에서의 색수차 보정이 가능한, 보다 향상된 광학 성능을 제공합니다.
대물렌즈는 샘플을 확대하는 유닛입니다. 대물렌즈는 샘플의 조건을 명확히 규정하고 있기때문에, 관찰하고자 하는 샘플의 조건에 적합한 대물렌즈를 선택해야 합니다.
조건이 부합하지 않을 경우에는 당연히 좋은 이미지를 기대하기 어렵습니다.
옵션 모듈식 장치로 최대 105mm(4.1인치)의 샘플을 스테이지에 장착할 수 있습니다. 향상된 포커싱 메커니즘으로 인해 현미경은 최대 6kg 의 총 중량(샘플 + 스테이지)을 수용할 수 있습니다.
FILM CROSS SECTION-OBSERVATION
jNO-MHU
JNO-MHU DISPLAY ( 최소단위 0.1 또는 0.2㎛ )JNO-MHU SensorJNO-MHU Reset ButtonJNO-MHU with BX51JNO-MHU with BXFM
미동핸들이 1회전 할때 BX53M은 100㎛, BXFM은 200 ㎛ 상하 이동을 합니다. 이때 미동핸들에 센서를 장착하여 샘플의 상하 이동값을 읽음으로써, 샘플의 높이 측정을 가능하게 합니다.
Auramine O나 Auramine-rhodamine을 이용한 염색법으로 20x 또는 40x 대물렌즈로 관찰 한다 (접안렌즈 기준 200배 또는 400배). 이러한 형광염색은 Ziehl-Neelsen (ZN) 염색에 비해 민감도가 10% 높아서 관찰량이 많은 사용자에게 적합합니다.
Standard Fluorescence Filter Cube Set Band Pass type – Made by JNOPTIC
JNO-U(B), JNO-B(B), JNO-G(B) – Made by JNOPTIC
39000, 39002, 39004 – Chroma Filter Model No.